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Abstract

Sufficient conditions are given for global controllability of the bilinear

system

~~- x(t) [A( t)t~~
B.(t)u.(t)1x(t) + C(t)u(t)

and a related class of nonlinear systems. An example is provided to illustrate

the simplicity of these conditions for certain bilinear systems.

~ FO~C~ OFIICE. 
CF SC’~ NT IF IC T~SEAP~CH (AFSC )

r~~ OF . ‘~~I1ITTt~Ti TO
lewed and is

.~~J—l2 (7b) .
— — —,

-- 
i~ ~~~~~~~~~~~~~

Officer

This research was supported in part by the Air Force Office of Scientific
Research under Grant AFOSR-75-2793B.



r ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

I. Introduction

The purpose of this note is to study the controllability proper ty of a

class of bilinear systems. Sufficient condit~r~ns aro derived for the global

controllability of this class of systems. These results are then generalized

to several other classes of nonlinear systems.

Consider the bilinear system

~~~x(t) = fA (t)+~~ B.(t)u
1(t)] 

x(t) + C(t)u(t), tc[t ,t1
] ( 1)

where x ( t)  is an nxl state vector , u (t)  is an mxl input vector with components

u.; A , B . ,  C are nxn , nxn, nxm matrix-valued functions respectively.

Given (x ,x1) as the initial and final state, respec tively ,  of (1). The

problem is to find a continuous input function u(t), defi ned on ~~~~~~~ which

steers system (1) from x to x1 at t1. The usual definitions of globally corn-

letely and totally controllable are assumed [1]. The global controllability

property of a class of bilinear systems using bounded controls was reported in

[2] in which rather sophisticated conditions were derived to insure global con-

trollability. Here, a completely different approach is used to derive suff i-

cient conditions for global controllability.

Denote Cm[to~t1
] as a Banach space of continuous Rm_valued functions on

[t ,t1
] wi th the uni form norm IIu(t) II max max Iu~(t ) l .~ where 1u 1( t ) I  is the

i t~[t ,t~]

absolute value of u1(t), the element of u(t). Define the norm of a continuous

nxin matrix-valued function F(t) by IIF(t ) II = max max 1F1.(t)I, where
i j=l tc[t ,t

1
] ~ ______

the F
11 

are elements of F.

For each fixed element v~ Cm
[t ,t1

] ,  the solution to the parameterized system~~I0fl 0

x(t) = [A(t)+ ~ B.(t)v.(t)] x(t)+C(t)u(t) (2)
i=]. DISThBU1IUN/AYAILA~flJTT aints
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with x (t
0

) x
0 

is given by
t

x(t) $(t,t ;v)x + J •(t,s ; v ) C (s) u (s )  ds ( 3)
0 ~

0

where $(t,t ;v) is the state transition matrix associated with the matrix

A( t ) + 
~ 

B
~
(t)v.(t).

i l
Define a controllability matrix C by

t
G(t

0
.t;v) = J •(t,s;v)C(s)C’(s)~ ’(t,s ;v)  ds (ti )

t
0

where prime denotes the matrix transpose operation. Obviously, G(t ,t ;v) is

symmetric and nonnegative-definite.

II. Main Result

Theorem 1: The bilinear system (1) is globally a) completely controllable at

t
o, 

or b) totally controllable, if the following conditions are satisfied :

(1) C( t ) has a continuous f i rst derivative with respec t to t,

(2)  ~(t ,t0;v) is bounded on [t0,t1
] x Rm ,A(.) and B.() are continuous,

(3) there exists a positive constant e such that

inf det G( t0,t1;v)  ~ C , (5)
VCC [to ,

t
1
]

a) for some t > t , or b) for all t and all t > t1 o 0 1 o

Proof: The proof of the theorem is based on Schauder’s fixed-point theorem.

For each fixed element vcC Ct ,t1
] ,  consider the control function u(t) for

tc[t
0,t1

] defined by

u(t) = C’(t)~ ’(t1,
t;v)G~~(t

0
,t1

;v)Ex
1—~

(t1,t0;V)x0) , (6)

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ T ________________________________
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where •(t,t0;v) is defined as in (3). It should be noted that by hypothesis (3)

G~~( t , t
1
;v) is well-defined in the above expression. With this control, ( 3)

can be rewritten as

x(t;v) = $(t,t ;v)x + J •(t,s;v)C(s)C’(s)~ ’(t1,
s ;v)

G~~(t ,t1
;v) d s[x

1-~
(t1,t ; v)x ] . (7)

It is easily seen that x( t ) in ( 7 )  satisfi es both boundary conditions at t t~
and t t

1.

Now the right side of (6) can be viewed as an operator P(v)(t).

Define the nonlinear mapping P(.) by

P(v)(t) C’(t)~ ’(t1,t;v)G~~(t ,t1
; v) [x

1
-4(t1,

t ;v)x ].

Obviously , P is continuous in t by the uniform continuity of •(t,t ;v) in t.

Therefore, P maps C ( t ,t
1
] into itself. It can also be easily verified by

hypothesis ( 2) and the definition of ~(t ,t0;v) that P is continuous in v. Con-

sider the subset of Cm[t
o,ti

]:

I = {vCC mtto ,ti] : I I v I l  ~ K1,~I I v ( t ) - v ( ; ) l I  ~ K2 1t-;I ,Vt,tctt ,t1] )

where K
1 

and K
2 

are certain positive constants depending upon A( t) ,  B.(t), C( t ) H

and its derivative. It can be easily shown that the image set P(I)C I. Be-

sides , I is closed and convex by this construction. Furthermore, each sequence

{s.} ~ c~ I constitutes a uniformly bounded equicontinuous family. Hence, by1 i l
the Arzela-Ascoli theorem [3], I is relatively compact and , therefore, compact.

Then, Schauder ’s theorem (3) can be applied to conclude that P has a fixed

point v* in I, i.e., P(v*)(t) = v*(t). Substitute this fixed point into (6)

and (7). A direct differentiation of (7) with respect to t shows that x(t;v*)

is a solution to the system (1) with u(t) given by v+(t).

— ~~~~~~~~~~~ ~~~~~~~~~~ •L~.t .~ —
-•;
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If condition 3a) holds, v+(t) drives system (1) from x0 to x1 on some inter-

val [t ,t1] for all x and x
1 in R

n
, and system (1) is globally completely con-

trollable at t
o. If condition 3b) holds, we have global total controllability. Q.E.D.

Even though the test of conditions (2) and (3) seems to be formidable, for

certain bilinear systems this can be done quite simply. The next corollary char-

acterizes one such class of bilinear systems which satisfy these conditions.

Consider the fixed bilinear system

~~-x (t) [A +

~~ 

B. u1
(t)]x(t) + Cu(t), tcft ,t1

]. (8)

Corollary 1: The system (8) is globally totally controllable if

(1) C is nonsingular,

(2) A and B. (i~l,2...,n) commute with one another,

(3) the B. are antisymmetric and have only zero, or purely imaginary, eigen-

values with simple elementary divisors.

Proof: Hypothesis (1) implies that C can be replaced by the identity matrix

without loss of generality. The boundedness of ~~t,t0;u) follows from hypo-

thesis (2) and the second part of hypothesis (3). Finally, to test the positive-

definiteness of the controllability matrix (~4) ,  we notice that the commutative

property of A and B1 implies

t

C(t ,t;u) 
Jt0

A(t~~~~ l B~
(t 15;ui

) (t ,S;ui)A
(t ,s) ds

where A (t ,to) and •B (t,t0;u.) denote the transition matrices associated with A

and B.u. respectively. Since the B1 are antisyinmetric, we have B
1
(t ,5 ;

~
h
i

)

O~ (t,s;ui) = I, the identity matrix. Hence,
i

G(t ,t1
;u) C: A(tl,5) A

(t l,5) ds = C
A 

> 0 for t1 >

L - - - —- - ____________
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where CA is some constant depending on A, to and t
1
. By Theorem 1, we conclude

that the system (8) is globally totally controllable. Q.E.D.

These results can be easily generalized to nonlinear systems consisting of

a bilinear mode and bounded nonlinearities. This is stated in the next theorem.

Consider the nonlinear system

~~~x(t) [A(t)÷~~ B.(t)u.(t)]x(t)+C(t)u(t)÷f(t,x,u). (9)

Theorem 2: If conditions (l)-(3)a (or b)) in Theorem 1 hold and,furthermore, if

f(t,x,u) , fx(t ,x,u),fu(t,x,u)  are continuous and bounded in [~0,~1]XR
nXRm , then

the system (9) is globally completely (or tota l ly)  controllable at t
o
.

— Proof: The proof is similar to that of Theorem 1 except that the Banach space

C [ t ,t1
] of continuous RnXRm matrix valued functions on [t

0,t1
] with the uni-

f orm topology is considered instead of Cm[to~t1]• The details follow similar

arguments as in Wei [4].

Finally, by observing that the boundedness conditions on the system matrix

A(t,x,u)  and its par tial derivatives listed in [ 4] can be relaxed by introducing

the boundedness of the transition matrix associa ted with A, we have the follow-

ing theorem which extends the results of [4]. Given the nonlinear system

A(t,x(t),u( t) )  + B ( t) u ( t)  + f ( t ,x ( t) ,u( t) )  (10)

where •(t,t0
;x ,u) ,  f(t,x,u) ,  f

~
(t ,x,u)  and f ( t,x,u)  are continuous and bounded

in [ t ,t1] xRnxRm ; A (t,x,u) ,  A
~

(t ,x,u)  and A
~

(t ,x,u)  are continuous in [ t ,t
1

] xRnxRm ;

B(t) has a continuous first derivative.

Theorem 3: If there exists a positive constant 6 such that

t
i

inf det J •(t ,s;z,v)B(s)B’(s)~ ’(t1,s ; z ,v)  ds ~ 6(z ,v)cC It ,t ] t 1
nm 0 1 o

~
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a)  f o r  some t
1 

> t
0, 

or b) for all t
o and t

1 
> t , then the system (10) is glo-

bally a)  completely controllable at t
0, or b) totally controllable.

Example: Consider the bilinear system

~~-x1
(t) x

1
( t) + x2(t) u

1
( t ) + u1(t)

tc[t0,T]  (11)

~~-x 2
(t) = x2

( t ) — x1( t ) u
1

( t ) + u2(t)

In matrix f orm, we have

1 0 ro ~. 1 0]
A( t ) = , B

1
(t) = , B

2
(t) = 0, c(t ) =

0 1 L-l 0 0 1

It is easily seen that conditions (1) and (2) in Corollary 1 are satisfied. Also,

B
1 
is antisymmetric and has purely imaginary eigenvalues ±i. Therefore, by

Corollary 1, system (11) is globally totally controllable.

III. Conclusions

7 Sufficient conditions for global controllability of a class of bilinear

and nonlinear systems have been derived. These results shed some light in ap-

plying fixed-point arguments to investigate the controllability of nonlinear

systems which contain unbounded nonlinearities. An interesting problem is to

link the closedness of the attainable set for commutative bilinear systems 4&~
with the conditions obtained here so that an explicit input function can be

derived or computed through iterative schemes.
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